[image: https://brandtools.partners.extranet.microsoft.com/NR/rdonlyres/224E044F-F84D-4EA4-B53F-2B55694D8997/5499/ofcbrand_h_rgb.jpg]

Managing SharePoint Application Development Lifecycle

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.
© 2007 Microsoft Corporation. All rights reserved.
Microsoft, MS-DOS, Vista, Windows, Windows NT, Windows Server, ActiveX, Excel, FrontPage, InfoPath, IntelliSense, JScript, OneNote, Outlook, PivotChart, PivotTable, PowerPoint, SharePoint, ShapeSheet, Visual Basic, Visual C++, Visual C#, Visual Studio, Visual Web Developer, and Visio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
All other trademarks are property of their respective owners.
License Agreement

SharePoint Application Development Lifecycle Management

Mark Liu, Jonny Trees, Adam Cogan
SSW
Month 2008
Applies to: Microsoft Office SharePoint Server 2007, Visual Studio 2008, Visual Studio 2008 extensions for Windows SharePoint Services, SharePoint Designer 2007, Visual Studio 2008 Team Foundation Server.

Summary: This whitepaper describes how the best practices for Application Lifecycle Management were applied in the development of the SharePoint 2007 web content management project for WorleyParsons. It focuses on the team workflow, development environments, version control and deployment aspects of ALM.
[bookmark: _Toc218522799]Contents
Contents	3
Introduction	4
Team Roles	4
Environment	5
Stand-alone Development Environment	5
Shared Development SharePoint Server	6
Packaging Server	6
Managing Environments with Virtualization	7
Creating Template Image	8
Creating a Template Image with Admin Console	11
Deployment with solution packages	12
Planning the Package	12
Building the Package	12
How to: Create SharePoint Projects	13
How to: Extract Files from SharePoint Server	13
How to: add Master Page & Page Layout	14
How to: Add Style sheets and Images	15
How to: Add Site Columns and Content Types	15
How to: Generate Content Type Definition	16
How to: add List Template	16
How to: include custom assemblies	17
Updating the Package	17
Making a Build	18
Deploying the Package	18
Outcomes	19
Conclusion	20
Additional Resources	20
About the Author	20

[bookmark: _Toc218522800]Introduction
Microsoft Office SharePoint Server 2007 and Windows SharePoint Services 3.0 are feature rich application platforms that offer a suite of server capabilities such as content management, search and unified workflow. As an application platform, SharePoint application development should be regarded no different to traditional software development, and common methodologies should be applied.
A key discipline to any software development is Application Lifecycle Management (ALM), which is the coordination of all development activities that includes requirements gathering, design, modeling, development, testing, issue tracking and deployment.
This whitepaper describes how the best practices for Application Lifecycle Management were applied in the development of the SharePoint 2007 web content management project for WorleyParsons. It focuses on following aspects in ALM:
· Team workflow
· Development environments
· Version control
· Deployment strategies
[bookmark: _Toc218522801]Team Roles
The development of a public facing web content management system for a multinational organization requires a variety of skills and resources. The following describes the roles in the team and the tools that were used by each role member:
· Editors are responsible for writing the content of the website. They are located around the world and use MOSS’s built-in rich text editor to compose articles, which then go through an approval workflow to get published to anonymous users.
· Web Designers are responsible for the creative design of the website and its implementation in HTML and CSS styling. They ensure the website is cross browser compatible by adhering to web standards and testing on multiple browsers. They use SharePoint Designer to modify Page Layouts and CSS, and to upload images.
· Developers are responsible for building custom web parts, creating site columns, content types, and base page layouts for the designers. They also create re-usable site definitions and deployment packages. They use Visual Studio 2008 Team System with Visual Studio extensions for Windows SharePoint Services.
· [bookmark: _Toc215487707]Network Administrators are responsible for the setup of SharePoint infrastructure – including farm, security and backup configuration. They are the owners of the production environment which cannot be accessed by other roles, and facilitate the deployment of versioned package to staging and production.

[bookmark: _Toc218522802]Environment
In a development team, multiple developers and designers will be working concurrently on the same application. Decisions must be made to determine the levels of overhead and control required to keep SharePoint application environments stable and maintainable, while keeping the development teams productive.
The WorleyParsons project used the 'Patterns & Practices SharePoint Guidance' as the base for structuring the development environment with deviations in having a Shared Development SharePoint Server for the designers and a Packaging Server instead of Continuous Build Server or a Build Verification Test Server.
Figure 1 illustrates the overall environment and workflow:
[image: D:\DataMarkLiu\Documents\MSUS_SharePoint_Whitepaper\Environment.bmp]
Figure 1
The following describes the environments in figure 1:
· Stand-alone development environment. Each developer uses a stand-alone workstation. Each development workstation includes a Virtualized SharePoint Server.
· Shared Development SharePoint Server. Manages all designer artifacts using SharePoint’s built-in version control. It also provides developers a centralized server to configure site columns and content types.
· Packaging Server. Updates the solution package with designer artifacts extracted from the shared server. It commits any changed files into Team Foundation Server so it can be version controlled against the build. It builds a versioned solution package that gets deployed, in turn, to test, staging and production environment.
· Source Control System: Team Foundation Server. Manages and versions all source code. It also includes designer artifacts and XML definitions extracted from the Shared Development SharePoint Server so it can be tracked against a versioned solution package.
· Test Environment. Owned by the Developers, it is used for functional, performance and deployment testing.
· Staging Environment. Owned by the Network Administrators, it is used for User Acceptance Testing by the editors. Its content database is frequently restored from production so testing can be performed on relevant data.
· Production Environment. Owned by the Network Administrators, it includes two separate zones for editors and public (anonymous) access. The editors work in this environment and take advantage of SharePoint’s built-in version control and publish workflow. Alternatively content can be edited on staging, and 1-way ‘Content Deployment’ used to publish to production.
[bookmark: _Toc218522803]Stand-alone Development Environment
Each developer should work in a stand-alone development environment to deploy and test their changes before committing to source control and sharing with the team. This prevents disruption to other team members when developing components such as custom web parts, event receivers, navigation providers, web control adapters, and HTTP modules.
The development of these components was done in Visual Studio 2008 with the project templates from Visual Studio extensions for Windows SharePoint Services (VSeWSS). This extension enables Visual Studio to build and to deploy solution package file onto the default SharePoint site on the local machine. The project is version controlled with Team Foundation Server.
[bookmark: _Toc218522804]Shared Development SharePoint Server
A Shared Development SharePoint Server enables designers to quickly make and review their changes in SharePoint by using SharePoint Designer. This avoids the time consuming process of packaging and deployment. It also enables developers to create site columns and content types in a friendly built-in web interface as opposed to creating xml definitions in Visual Studio. These content types and site columns can also be used immediately in the page layout and web parts without deployment. Using this shared server, designer artifacts such as master pages, page layouts, XSL, CSS and images can be version controlled using SharePoint’s built-in functionality. These designer artifacts, site columns and content types can later be extracted and packaged in the packaging server.
[bookmark: _Toc218522805]Packaging Server
This server is used to update the solution package with designer artifacts and content type definitions extracted from the Shared Development SharePoint Server. The updated files are then checked back into Team Foundation Server to allow all the files in the solution package to be labeled and version controlled.
Ideally, this package updating process is included in the build script. Then Microsoft Team Build Server can be installed on this server to automate the updating, build and packaging process. This build script can then be integrated with Continuous Integration to provide event-driven and daily builds. Unfortunately, in the WorleyParsons project, the package updating process includes steps that could not be automated due to the lack of tools available at the time.	Comment by Paul Andrew: Needs explained what the solution would be for this now.

[bookmark: _Toc215487709][bookmark: _Toc218522806]Managing Environments with Virtualization
The configuration of SharePoint Servers can be a complicated and time consuming process due to the number of server-side technologies SharePoint leverages. Virtualization of the development and test environment can provide the following benefits to the team and the development life cycle:
· Reduce setup time – New machines can be rapidly cloned so the team can be easily scaled in the development life cycle.
· Avoid conflicts – Isolated environments prevent conflict of server side technologies that may be used by other developments.
· Reduce cost – Existing hardware can be reused to host new SharePoint environments, workload can be distributed dynamically between development laptop, workstations and server.
In the WorleyParsons project, the following templates were used to streamline the setup of development and test environment:
· Base Server Image. This is used as base template for all virtual servers. It includes:
· Windows Server 2003 SP2 or 2008
· .NET Framework 3.5
· SharePoint Server Image. This is built from the Base Server Image and is used to build the Shared Development SharePoint Server and the test servers. Development tools should be excluded from this image because it needs to mimic the production servers. This image should include the following additional servers/services:
· SQL Server 2005 SP2 or 2008
· Windows SharePoint Services 3.0 SP1
· Microsoft Office SharePoint Server 2007 SP1
· SharePoint Development Image. This is built from the SharePoint Server Image and is used to build the Virtualized SharePoint servers used by the Stand-alone Development Workstations and the Packaging Server. This image should include the following development tools:
· Office SharePoint Designer 2007
· Visual Studio 2005 or 2008
· Visual Studio 2005 will need Visual Studio 2005 Extension for .NET Framework 3.0 (Workflow Foundation) to work with workflow. This feature is built in to Visual Studio 2008.
· Download Workflow Foundation Extension for Visual Studio 2005
· Visual Studio extensions for Windows SharePoint Services
· VSEWSS 1.1 for Visual Studio 2005
· VSEWSS 1.2 for Visual Studio 2008
· Internet Explorer Developer Toolbar
· Download the IE Developer Toolbar
· Mozilla Firefox with Firebug add-on to test for cross browser compatibility
· Download Firebug for Firefox

[bookmark: _Toc218522807]Creating Template Image
A template image is a virtual hard disk (VHD) of an existing virtual machine with all the required components installed and the system prepared for cloning. The cloning process makes a binary duplicate of the template image for the new cloned machine. This enables rapid deployment of new environments as machines can be created with a simple copy instead of executing complex installers from various media.
A template image needs to be prepared with Microsoft sysprep tool before it can be cloned. This is because copying of the VHD also duplicates system specific information such as security identifier (SIDs) associated with the computer. This can cause conflicts if multiple cloned machines are hosted on the same network. Sysprep works by removing all machine specific settings from the template image, so it can be safely cloned.
Sysprep tool must be used with care when preparing a SharePoint template image, as SharePoint configuration contains machine specific settings. These settings are not supported by sysprep and running sysprep will leave the configuration invalid and the installation inoperable.
The recommended approach is to install all SharePoint components and sysprep the machine before configuring SharePoint. The image can then be used as template to safely clone new machines. SharePoint configuration can then be completed on the new machine. The configuration can be done either manually by running SharePoint Configuration Wizard (psconfigui) or automated by an installation script using psconfig.
Paul Horsfall has a blog that describes the scripts needed to automate the configuration of Microsoft Office SharePoint Server in conjunction with sysprep: http://paulhorsfall.co.uk/archive/2007/05/21/SharePoint-Sysprep-and-SQL.aspx	Comment by Eric Phan: Consider moving this to a references section or as a footnote on this page
Overview of steps taken to create template images used in SharePoint development:
1. Create Virtual Machine with virtualization tool such as Hyper-V or Virtual PC	Comment by Mark Liu: Replying to PA: the above was an outline of images required. the below are steps to create all 3 images. The steps include sysprep 3 times because it creates 3 re-usable template. 1 for base OS, 1 for SharePoint server and 1 for SP Dev machine.	Comment by Paul Andrew: Isn't ths the same list of install steps as on the previous page? Why is is duplicated?
2. Install Windows Server 2003 or 2008 with the latest service pack and the following configuration:
a. Leave the machine in workgroup, do not join domain
b. Leave the administrator password as blank
3. Optional – the image can be cloned and sysprep-ed at this point to create the base server image
4. Add the following Server Roles:
a. Application Server
b. Web Server (IIS)
5. Install SQL Server 2005 or SQL Server 2008
a. Note: full SQL Server installation improves performance and enables the development and testing of integrated reports
6. Install Microsoft Office SharePoint Server 2007 with SP1
a. Use the Complete Installation option so it can be configured to use the full SQL Server 2005 or 2008 installation
b. Do not run the SharePoint Configuration Wizard before sysprep
7. The image should be cloned and sysprep-ed to create the SharePoint Server Image
8. Install Office SharePoint Designer 2007
9. Install Visual Studio 2005 or 2008 Team System
10. Install Visual Studio extensions for Windows SharePoint Services
11. Install Mozilla Firefox with Firebug add-on to test for cross browser compatibility
12. Image should be cloned and sysprep-ed to create the SharePoint Development Image
How to sysprep for Windows Server 2003
The following describes the steps taken to sysprep a Windows Server 2003 image:
1. Download the deploy.cab for the sysprep tool
· For Windows Server 2003, the cab file is located in the original media at:
\Support\Tools\Deploy.cab
· For Windows Server 2003 sp1, it can be downloaded from:
http://www.microsoft.com/downloads/details.aspx?FamilyId=A34EDCF2-EBFD-4F99-BBC4-E93154C332D6&displaylang=en
· For Windows Server 2003 sp2, it can be downloaded from: http://www.microsoft.com/downloads/details.aspx?familyid=93F20BB1-97AA-4356-8B43-9584B7E72556&displaylang=en
· Note: the downloaded hot fix for SP1 and SP2 will install the cab file to: C:\windows\system32\deploy.cab
2. Copy the content of the deploy.cab into c:\sysprep folder
3. Run the c:\sysprep\setupmgr.exe with the following selection, the rest can be left on default:
a. Select "Create new" for answer file
b. Select "sysprep setup" for answer file type
c. Select the correct Windows Server edition
d. Select "Yes, fully automate the installation"
e. Enter user name and organization
f. Enter product key
g. Select "Automatically generate computer name"
h. Add any "Run Once Commands". These are commands that are executed the first time user logs in and are used to trigger manual configuration such as SharePoint Configuration Wizard (psconfigui.exe).
i. Add any "Additional Commands"
j. Save the answer file to: C:\sysprep\sysprep.inf
4. Run c:\sysprep\sysprep.exe with the following selection:
a. Check "Don’t reset grace period for activation"
b. Uncheck "Use Mini-Setup"
c. Uncheck "Don’t regenerate security identifiers"
d. Select "Shut down" for shutdown mode
e. Click "Reseal"
f. Click OK when asked to regenerate SIDs
5. System will be prepared and automatically shutdown. Do not restart the image, as it will undo the sysprep process.
How to sysprep for Windows Server 2008
For Windows 2008, the sysprep tool is included as part of the Windows installation. It is located at c:\windows\system32\sysprep\sysprep.exe. However, the setup manager used to create the answer file is replaced by Windows System Image Manager which is part of Windows Automation Kit. This can be downloaded from Microsoft Download Center at http://www.microsoft.com/downloads/details.aspx?FamilyID=94bb6e34-d890-4932-81a5-5b50c657de08&DisplayLang=en.
The following describes the steps taken to sysprep a Windows Server 2008 image:
1. Download Windows Automation Kit
2. Install and run Windows System Image Manager
3. Select the Window image or catalog file for your edition of Windows Server 2008
a. Note: catalog file can be found in the Windows Server 2008 DVD under the Sources directory
4. Configure the Answer file tree with the following settings:
a. Name, Organization Name, Product Key
b. Enable automatic generation of Computer Name
c. Add any Run once or additional commands
5. Save the answer file to:
c:\windows\system32\sysprep\unattended.xml
6. Run sysprep with the following command line:
sysprep /generalize /oobe /shutdown /unattend:sysprep.xml
For more information, see: http://blogs.technet.com/askcore/archive/2008/10/31/automating-the-oobe-process-during-windows-server-2008-sysprep-mini-setup.aspx
Managing Virtual Machines with System Center
System Center Virtual Machine Manager (SCVMM) is an enterprise level solution that provides centralized administration of virtual machine infrastructure. It benefits the SharePoint development life-cycle by enabling developers to provision their own Virtual Machines from a template in the virtual machine library.
A common problem with Hyper-V and Virtual PC is the lack of built-in support for managing template images. The cloning process in these solutions requires users to be disciplined in the management of the VHD files. Template VHD files are marked as read-only to prevent accidental changes. It is then copied to a new location and used to create the new Virtual Machine. This process is error prone and can be costly to the team if developers accidentally corrupt the template VHD.
SCVMM provides an Admin Console and a Self-Servicing Web Portal for Network Administrators and Developers to use respectively. The Admin Console is used to centrally manage all virtual hosts and virtual machines. It can also create a template image from an existing VHD using the Sysprep tool. The Self-Servicing Web Portal is used by the developers to provision new SharePoint machines for the development and test environments.
The following will describes the steps taken to create and manage template image with SCVMM.

[bookmark: _Toc218522808]Creating a Template Image with Admin Console
SCVMM can create templates from existing virtual machines or VHD files, it wraps around the sysprep tool, so that the image does not need to be syspreped manually before adding to the template. However, all the sysprep limitations still apply so the image should be added before SharePoint is configured.
The following describes how a VHD created in Hyper-V can be added into SCVMM as a template:
1. Open SCVMM Admin Console
2. Open MSSCVMMLibrary with Windows Explorer and copy the VHD
[image:]
3. Refresh the Library to show the VHD in the console
4. Go to Actions > Library Actions > New Template
[image:]
5. Select Use an existing template or a virtual hard disk stored in the library
[image:]
6. Enter template name, owner and description. Owner determines who can access this template in the self-servicing web portal. Setting it to the developer group will allow all developers to access this template.
[image:]
7. Configure the hardware, allocate 1024 to 2048 GB of RAM
[image:]
8. Configure the Guest Operating System with the following detail:
a. Company name
b. Admin password
c. Product key for the Operating System
d. Time zone
e. Operating System type – this determine how the image is Sysprep
Domain setting - leave the SharePoint Servers off the domain so it can be added if needed.
f. Answer file – a Sysprep.inf file for Windows XP, Windows Server 2000 or Windows Server 2003 or a unattended.xml for Windows Vista and Windows Server 2008 can be supplied to provide additional configuration such as the automated configuration of SharePoint.
g. Command line – additional commands that will be run the first time user login. To run the SharePoint Configuration Wizard the following command can be added:
%COMMONPROGRAMFILES%\Microsoft Shared\Web Server Extensions\12\BIN\psconfigui.exe
9. Click OK
10. SCVMM will now prepare the VHD for the template process
Creating Virtual Machines with the Self-Servicing Web Portal
1. Login to the SCVMM web portal
[image:]
2. Click New Computer
3. Select the SharePoint 2007 Template and enter the system properties:
[image:]
4. Wait for the machine to get created:
[image:]
5. Login to the new Virtual Machine to configure the SharePoint
[bookmark: _Toc215487710][bookmark: _Toc218522809]Deployment with solution packages
Solution packages were introduced in Windows SharePoint Services 3.0 to provide a way to bundle all the components for extending Windows SharePoint Services. The solution package uses a CAB based format with a WSP file extension and is a reusable package that can be deployed across web servers in a web farm. It can contain a set of features, site definitions and assemblies, and it can be enabled or disabled individually on the sites.
This section details how the WorleyParsons project was planned, built, updated and deployed using the solution package. This enables the application to be easily deployed to different environments in the application development life-cycle.
[bookmark: _Toc218522810]Planning the Package
In the WorleyParsons project, two SharePoint projects were required, one for the custom features and another for the site definition. Ideally, both can be included in a single SharePoint project and deployed in one solution package. However, custom feature receivers interfere with the built-in features generated by VSeWSS for the site definition, so the site definition had to be separated from the main solution package.
An overview of the projects and features in the solution package is shown below:
· WorleyParsons.Features project contains the following features:
· MasterPages, PageLayouts, Images and Styles features contain customization for the look and feel of the site
· SiteColumns feature contains customization for additional fields and types that are required for the Page Layouts
· WebParts feature contains customized web parts in the gallery
· ListTemplates feature contains lists to be used by web parts
· WebContentTypeBinding feature contains bindings to associate libraries with content types
· WorleyParsons.SiteDefinition project contains a single feature:
· SiteDefinition contains the site templates for users to create new sites
Features were created for each logical component so they can be tested individually in test environment.
[bookmark: _Toc218522811]Building the Package
The solution package can be created using Visual Studio extensions for Windows SharePoint Services. VSeWSS provides project templates that can be used to build the .wsp file in Visual Studio. It also provides a WSP view that can be used to configure solution package structure. Manifest and feature xml files that define the solution package are configured in the XML editor. The schema for WSS XML files can be added to Visual Studio to enable validation and intellisense.
Steps to enable schema validation and intellisense in Visual Studio 2005:
1. Copy:	%ProgramFiles%\Common Files\Microsoft Shared\web server extensions\12\TEMPLATE\XML\wss.xsd
2. To: 	%ProgramFiles%\Microsoft Visual Studio 9.0\Xml\Schemas
And in Visual Studio 2008:
1. Open the manifest (or any xml) file to enable the XML menu
2. Click XML menu > Schemas…
3. Add %ProgramFiles%\Common Files\Microsoft Shared\web server extensions\12\TEMPLATE\XML\wss.xsd
The following topics will provide details on how the solution package is created, it includes:
1. Creating the SharePoint project
2. Extracting designer artifacts from Shared Development SharePoint Server
3. Add master page and page layout
4. Add styles and images
5. Add site columns and content types
6. Add list template
7. Add custom assemblies
[bookmark: _Toc218522812]How to: Create SharePoint Projects
1. Create new project with the SharePoint > Empty template
[image:]
2. Add new SharePoint Modules
[image:]
3. Review the package with WSP View
[image:]
4. Build and deploy to http://localhost for testing
[image:]
[bookmark: _Toc218522813]How to: Extract Files from SharePoint Server
Designer artifacts that were developed in SharePoint Designer are stored in the content database on the SharePoint Server. These files need to be extracted from the Shared Development SharePoint Server so they can be included in the solution package.
There are two ways to extract these files,
1. Use Web-based Distributed Authoring and Versioning (WebDAV) protocol to download the files with Windows Explorer.	Comment by Michael Washam: Need a more detailed explanation on how to accomplish this or a link.
2. Use or modify the STSADMExtractFiles sample from Michael Washam to download the files. This option allows the extraction process to be automated using a batch script.
During the development of the WorleyParsons project the first option was used since the stsadm extraction tool had not been released. 	Comment by Paul Andrew: We need a note here that the project could have acheived the same result.
Using WebDAV
1. Browse to the Master Page Gallery
http://servername/_catalogs/masterpage/Forms/AllItems.aspx
2. Select Actions > Open with Windows Explorer
[image:]
3. Copy files from Windows Explorer into the package project
Using STSADMExtractFiles
1. Download and install the tool from:
http://blogs.msdn.com/mwasham/archive/2008/11/20/how-to-extract-aspx-files-out-of-a-sharepoint-content-database.aspx	Comment by Eric Phan: Consider making this a reference and footnote
2. Run the following batch script:
stsadm -o savefromfolder -weburl http://servername
–localworkingdirectory C:\Projects\ProjectFolder\MasterPages
-starturl /_catalogs/masterpage
[bookmark: _Toc218522814]How to: add Master Page & Page Layout
1. Add new Module named as “MasterPages”
2. Extract master pages and page layouts from: /_catalogs/masterpage
3. Add files to: %ProjectFolder%\MasterPages
4. Include files into the project
5. Add preview images to %ProjectFolder%\MasterPages\Previews folder. This allows administrators to preview the layout of the site in site settings. The recommended image size is 216 x 162 pixels.
6. Open %ProjectFolder%\MasterPages\Module.xml
7. Add the following attributes to the Module element:
<Module Name="MasterPages" List="116" Url="_catalogs/masterpage">
8. Add the following File element for any new master pages:	Comment by Michael Washam: What module? There are no steps in this document on adding a module. A good reference for a walk through: http://msdn.microsoft.com/en-us/library/ms441170.aspx
<File
 Path="[MasterPageName].master"
 Url="[MasterPageName].master"
 IgnoreIfAlreadyExists="TRUE"
 Type="GhostableInLibrary" >
 <Property
 Name="ContentType"
 Value="$Resources:cmscore,contenttype_masterpage_name;" />
 <Property
 Name="MasterPageDescription"
 Value="[Your MasterPage Description]" />
 <Property
 Name="PublishingPreviewImage"
 Value= "~SiteCollection/_catalogs/masterpage/$Resources:core,Culture;/Preview Images/[MasterPageName]Preview.gif, ~SiteCollection/_catalogs/masterpage/$Resources:core,Culture;/Preview Images/[MasterPageName]Preview.gif"></Property>
</File>
Note: For more information on updating module definition, see: How to: Provision a File.

[bookmark: _Toc218522815]How to: Add Style sheets and Images
Designer artifacts can be found in either Style Library or the Image Library depending on its usage. Style library contains Cascading Style Sheets (CSS) and images that control the overall site layout, and Image library contains re-usable artworks that are used by the editors on individual pages.
To package files for the style library:
1. Add new Module named as “Styles"
2. Extract files from: /Style Library/en-us/ProjectName
3. Add files into: %ProjectFolder%\Styles
4. Open %ProjectFolder%\Styles\Module.xml
5. Add the following attribute to the Module element:
<Module
Name="Styles"
Url="Style Library/en-us/ProjectName"
RootWebOnly="TRUE">
6. Add the following File element for any new files:
<File
Url="[Your File Name]"
Path="[Your File Name]"
Type="GhostableInLibrary" />
To package files for the image library:
1. Add new Module named as “Images”
2. Extract files from: /Images
3. Add files to: %ProjectFolder%\Images
4. Open %ProjectFolder%\Images\Module.xml
5. Add the following attribute to the Module element
<Module
Name="Images"
Url="SiteCollectionImages"
RootWebOnly="TRUE">
6. Add the following File elements for any new files:
<File
 Url="[Your File Name]"
 Path="[Your File Name]"
 Type="GhostableInLibrary" />
[bookmark: _Toc218522816]How to: Add Site Columns and Content Types
Site columns and content types can be deployed by including a content type definition file in the solution package. However, Windows SharePoint Services does not track all changes made to the content type definition. Therefore, there is no built-in method for pushing down all the changes made to site content types to the child content types used by existing lists. This is problem is briefly described in Updating Content Types on msdn and it poses a serious challenge to the redeployment scenario.	Comment by Eric Phan: Consider replacing with the title and making the link a footnote/reference
One solution to this problem is to use the SharePoint object model to force the propagation of the content type changes to existing lists. This solution, originally described by Søren Nielsen on his blog, iterates through all existing lists and creates, deletes, or updates fields based on the site content type. The solution was later extended by Gary Lapointe in his blog which allows the propagation to be called in feature receiver. In the WorleyParsons project, this code was further extended to support propagation by group name on content types. There are some limitations to the current implementation:	Comment by Eric Phan: Reference/Footnote
1. It only updates fields, it does not cover other aspects such as policies and document information panel (DIPs)
2. It does not handle read-only or sealed content type
3. It can be slow to deploy on a large SharePoint site
[bookmark: _Toc218522817]How to: Generate Content Type Definition
Content type definition can be manually written in Visual Studio or it can be generated from Shared Development SharePoint Server using MossStsadmWcmCommand tool from Andrew Connell: http://www.andrewconnell.com/blog/articles/MossStsadmWcmCommands.aspx.
To generate site columns:
stsadm -o GenSiteColumnsXml -URL http://localhost -outputfile "C:\SiteColumns.xml" -groupfilter "application name”
And to generate content types:
stsadm -o GenSiteContentTypesXml -URL http://localhost -outputfile "C:\ContentTypes.xml" -groupfilter "application name"
Note: These commands will generate XML based on its current properties on the server and may contain fields that are not included in the schema, fields such as Version, PITarget, PrimaryPITarget, PIAttribute, PrimaryPIAttribute and Aggregation.
Note: Group all site columns and content types to make this command work more effectively. The group filter can then be reused in the custom feature receiver to find content types to propagate.
[bookmark: _Toc218522818]How to: add List Template
List definition can be exported with solution generator that comes as part of VSeWSS. This approach is safer than exporting list as STP because it handles related lists. The solution generator can be used to export site definition or list definition. The following describes how the solution generator can be used to export list definition for existing solution package project:
1. Launch ‘SharePoint Solution Generator 2008’ from the Start menu
2. Select List Definition
[image:]
3. Select the site url:
[image:]
4. Select the list to export:
[image:]
5. Enter the project name and export location
6. Browse to the export directory
[image:]
7. Copy folder with the list name into the existing SharePoint project
[image:]
[bookmark: _Toc218522819]How to: include custom assemblies
1. Add a project reference to the custom project in the solution package project
2. Include the DLL in the bin directory (otherwise it will not be packaged by VSeWSS): [image:]
[bookmark: _Toc218522820]Updating the Package
The solution package needs to be frequently updated with files from the source control and the Shared Development SharePoint Server. This update process consists of the following areas:
1. Designer artifact changes
2. Content type changes
Updating Designer Artifacts
The key to streamlining this update process is to keep the files, in the development environment, the way it should be deployed in production. This way automation can be set up around the Module.xml file to determine where the file should be downloaded from in the Shared Development SharePoint Server.
To determine the source URL of the file on the SharePoint Server, the URL on the File element can be concatenated with the URL on the Module element. The same can be applied to the Path of the file in the solution package by concatenating the Path between the two elements.
For example, with the following module.xml:
<?xml version="1.0" encoding="utf-8"?>
 <Elements
 Id="b4b87ed0-7556-42be-ad85-581edcdaa351"
 xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="Images" Url="SiteCollectionImages"
 Path="" RootWebOnly="TRUE">
 <File Url="logo.gif" Path="Images\logo.gif" Type="GhostableInLibrary" />
 </Module>
</Elements>
The relative URL of the file on the SharePoint server will be /SiteCollectionImages/logo.gif, and the local file path relative to the Module.xml will be Images\logo.gif.
In the WorleyParsons project, the stsadm extraction sample from Michael Washam was not available due to timing. The automation used to update package was setup to download files from Shared Development SharePoint Server based on the Module.xml. Downloading files over http means the process cannot check for modification and must update all files indiscriminately. It also means files such as master pages and page layout cannot be updated via automation.
Technically this is now fully automatable with the stsadm extraction sample from Michael Washam. One possible way is to use XSL to transform Module.xml into a batch script that calls the extraction sample to update the local files in the solution package.
Updating Content Type Changes
This is a manual process using the MossStsadmWcmCommand tool from Andrew Connell. Technically, this can be automated by transforming the output XML with an XSL to remove elements and attributes that do not belong to the Content Type Definition File schema. However, this update rarely occurs during the development life-cycle of the WorleyParsons project and it remains a manual process.
Making a Release Build
Once the project is updated, the package can be build by running Deploy Solution in Visual Studio. However, developers should take care when making a release build for test and production environment. Process needs to be in place to ensure each build is correctly versioned so changes can be traced back the source code. To achieve this, the following steps should be taken when making a release build:
1. Update version and check-in changes
2. Get latest source code
3. Build the project
4. Label source code with the version
5. Rename the package to include the version
6. Copy the package to a shared location
Build automation can be used to minimize errors in these tedious and repetitive tasks. The following article in patterns & practices SharePoint Guidance describes how Microsoft Team Build can be configured to automate the build of a SharePoint solution package.
[bookmark: _Toc218522822]Deploying the Package
Once the solution package is built it can be deployed and activated with Central Administration or stsadm command line. There are two options for upgrading solution package on the SharePoint server:
1. Upgrade solution – this will update any files in the file system. However, it will not reactivate any existing features. Which means upgrade code in the feature receiver will not be executed. These features can be force activated individually on the site. For other operations not supported by upgradesolution, see:
http://msdn.microsoft.com/en-us/library/aa543659.aspx.	Comment by Mark Liu: From SP:
There are a bunch of other things that you cannot do with upgradesolution that it seems not a lot of people are aware of. It would be worth including a link to http://msdn.microsoft.com/en-us/library/aa543659.aspx to cover those items.
2. Reinstall – this will take longer as the solution is uninstalled and then reinstalled. All features will be reactivated and upgrade code triggered.	Comment by Mark Liu: From SP:
Again, I would suggest dangerous in an enterprise environment with lots of site collections and widely used content types. I would be inclined to look at / suggest some kind of configurable update of content types that uses some sort of change log and a batch process to move it to a scope of site collections. Or any other suggestion someone else can come up with to do limited scope updates so as not to swamp your infrastructure.
In the WorleyParsons project, the reinstall option was used to trigger feature receiver to propagate site column’s and content type’s changes.
The deployment process can be simplified by using the setup batch file generated by VSeWSS in the output directory. The setup script calls stsadm to install or uninstall solution and activate or deactivate features (it does not support upgradesolution). It accepts a range of arguments to configure the target server, target site and the installation mode. By default the setup script will install the solution package and activate all features under http://localhost:80.
The following describe the command line usage and options of the setup script:
setup.bat [/install or /uninstall] [/weburl <url>] [/siteurl <url>] [/help]
	/install or /uninstall
	Install Solution package (.wsp) to the SharePoint server or uninstall the solution package from the SharePoint server.
Default value: install

	/weburl
	Specify a web url of the SharePoint server.
Default value: http://localhost

	/siteurl
	Specify a site url of the SharePoint server.
Default value: http://localhost

Once the application is deployed and tested, the solution package is zipped up with the setup script and handed to a network administrator for deployment to staging and production environment.
[bookmark: _Toc68500440][bookmark: _Toc215487712][bookmark: _Toc218522823]Outcomes
In the WorleyParsons project, the development and deployment aspects of ALM were implemented successfully, while the build and packaging aspects could be improved and streamlined through automation.
The key outcomes of this ALM process were:
· Streamlined development environment
· Allows designer to work directly with SharePoint using SharePoint Designer for a WYSIWYG experience rather than modifying package and going through deployment process
· Virtualization of development and test environment
· Isolated environment for development and testing
· Allows simple and fast scaling of development team
· Reduces network administration demands by using Self-Servicing Web Portals in System Center Virtual Machine Manager
· Deployment through solution packages
· Version control on these packages using Visual Studio Team System
· Simple deployment process can be easily repeated between different environments
Aspects that can be improved:
· Automating the build and the packaging
· Updating content types and page layouts remained as manual steps that can be automated
· This will allow the packaging process to be included in the Team Build
· This improvement would help reduce the time spent building packages
· Use of multiple solution packages
· This is because feature receiver have conflicts with the built-in feature
· Having a single solution package will simplify the deployment and version management
[bookmark: _Toc218522824]Conclusion
A successful ALM implementation in SharePoint development can bring a host of benefits to the project by improving team productivity, product quality and on time delivery. This can easily be achieved with a bit of planning and by following Microsoft SharePoint Guidance.
[bookmark: _Toc215487713][bookmark: _Toc218522825]Additional Resources
· The SharePoint Developer Introduction for .NET Developers
· Patterns & practices: SharePoint Guidance
· Best Practices Resource Center for SharePoint Server 2007
· Overview of Team Foundation Build
· Automating Solution Package Creation for Windows SharePoint Services by Using MSBuild
· Using Team Foundation Server to Develop Custom SharePoint Products and Technologies Applications
· http://blogs.msdn.com/vesku/archive/2008/07/29/continuous-integration-in-moss-development-using-tfs.aspx
[bookmark: _Toc218522826]About the Author
Mark Liu is a Senior Software Architect at SSW, a Microsoft Certified Partner specializing in .NET Solutions. He is specialized in developing solutions with C#, VB.NET, ASP.NET, Web Services, SQL Server and Microsoft Office Integration.
Jonny Trees is a Senior Software Architect at SSW, a Microsoft Certified Gold Partner specializing in database driven .NET Solutions. Jonny specializes in building ASP.NET web applications with SQL Server backend, Microsoft Dynamics CRM solutions and SharePoint 2007.

SharePoint Application Development Lifecycle Management		Month 2007

		
© 2007 Microsoft Corporation. All rights reserved. 		Page 18
By using or providing feedback on these materials, you agree to the attached license agreement.
To comment on this paper or request more documentation on these developer features, contact us at Customers First. We look forward to hearing from you.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering this document or the subject matter included in this document. The furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

1

		Page i
image2.png
Stand-alone
Development

Check-in

Get latest
code changes.

Source Control
(Team Foundation Server)

designer artifacts,

Using
Sharepoint 3

Designer %

Shared Development
SharePoint Server

Web Designer
Workstations

Update designer artifacts.
in solution package

[

Packaging Server

Development Environment

Production
Environment

Staging
Environment

image3.png
Library

Resaurces

s Libray Servers
=) 5 falconsychney ssw.com au

image4.png
' virtual Machine Manager - falcon.sydney.ssw.com.au

Fle Vew Go Aciors | Help
ElfAcions] mm oy VrtuslMachine Manager b tworking 35 Powershel (2 Help
Ty Librery Actions > B Newtemplate

Y8 ew harcware profe

[Pesources A 2
—
FETEm D oo osptie

image5.png
B'New Template

B0 Select Source

Select Source

Select a source for the new termplate.

Template Identiy
5 Use an esisting template ot 2 vitual hard disk stored n the fbrary

Configue Herdwars [ShareFoin_2007_Template_windows2008 Browse,

Guest Dperating System

" From an esisting vitusl macine thet s deployed on a host
Summary

Biowse,

=

image6.png
B'New Template

B0 Template Identity

SelectSouce e
Templat deiy ShrePon 2007 Tenplate

Corfigute Hardware e

Guest Operaing System SSW 2SS WDevobpers e

Summary Forma; domainusemanme

Desciptior:
Installed: Windows Server 2008, SGL Server 2008 and Diice SharePaint Server 2007

T =

image7.png
Select Source

Template Ideriiy
Conligure Herdware:
Guest Dperating System

Summary

Corfigure hardware for the virtual machine. You can import settings from a hardware
profile or save a new profile based on your settings.

Harduare profe: [(New]

m Memory

BI0s
a ED Vitual machine memory: [1024 = [<.
(1)1.20 GHz Athlon.

i Memory
702445

T Flowpy i
Noieda Coptred
7 coM
Nore
7 coz
Nore
2 Bus Configuration
5 DE Devices
2Devices tsched
. SharePoin_200.
1200068, i
Vituel VD dive
Nobeda Capt..
2 Network Adapters
W Network Adspter
Not cormected
a Advanced

) Speci how much memoy (4 00 MB - 6400 68) to losale o the vitual
machine

T =

image8.png
— Moot
| [B)y System Center
Virtual Machine Manager

Mark Liu www.ssw.com.au

Contact Administrator | Help | Log OF

VM Name . | Status | Owner
VM-SPDEV08-0001 | Stopped | SSW2000\markliu

Memory | Disk
1GB | 14GB

Date Deployed | Quota
12/9/2008 1

Create

& New Computer

Actions

e

B X Da <

image9.png
& Role sasenicoDasipas +

Creation Source
Select a template from which to create the virtual machine.

Name Description Operating System Memory | Disk | Quota points|

‘SharePoint 2007 Template Installed: Window... 64-bit edition of Windows S_. 1 1024 . 0GB 1
Windows Vista 64sp1 64-bit edition of Windows Vi... 1 1024 . 40 . 4

7=| System Configuration
— Apply properties to this computer

Name: VM-SPDEV08-0002 Computer name:
Description: ‘Admin password:
Confirm password:

Product Key:

Total (20)

* Quota Points i B Used (1) [Available (19)

image10.png
Moot Mark Liu www.ssw.com.au | Contact Administrator | Help | Log OF

| [B)y System Center

irtual Machine Manager Clear.

Computers
» El List View
VM Name - Memory Disk Date Deployed | Quota

VM-SPDEV08-0001 | Stopped | SSW2000\markiu | 1GB | 14GB | 12/9/2008 1
VM-SPDEV08-0002 | Creating... SSW2000\markiu 1GB | 0B | 12/10/2008 1

Create

& New Computer

Actions

{ »
| .

Properties

image11.png
[New Project

Project types: Templotes; NET Framework 35 7|

Test =[Visual Studio installed templates
wer
Workdow Team S Definton ek e Defiriton
5 vl ¥ (5Lt Definton Eweb part
Windows (Hlempty
web
Smart Device My Templates
office
Datebase flsearch Orine Templates

Reporting
Sharepoint
Test
WeF
workflom
WSPBulder
Diciuted Sycreme [
i empty project for creating a SharePaint applcation NET Framemork 3.5)

Hame: ‘S5W, SharePointDemo|
Location CiDocuments and SettingsimerkiuiMy Documents\isual Studo 20081Projects] Bromse.
Soluton Heme: [55W.SherePontDema I™ Create dectory for soution

T~ Add to Source Control

image12.png
[Add New Item - 55W.SharePaintDemo [21x]

Categoris: Templates:
BT Visual Studio installed templates
Code
Data st Defintion i Definiin from Cortent Type
General lContert Type siFeld Contrcl
web e part slvadle
Windows Forms il Templote hlEvent Receiver
wer il Instance
Reporting

My Templates

wWseBuider . search orlne Templtes,

Use to nclude a il or set of Fles in your SherePoint appication

Name: Woddel

==

image13.png
= (g 55W.SharePaintDemo
i mantestoml
=] MasterPages
T feature il
@ MasterPages

image14.png
Debug Data
25 Bl Sohtion [
Rebid Soution

Tooks

Clean Solution
[buid webartt Shift+Fs
Rebuild WebPartl

image15.png
Master Page Gallery

Use the master page galery to store master pages. The master pages in tis g

PO [—
T teme et Datashect

[
[Sp—" = |
D | SSMENEREE
[

Connect o utiok
0= |~
8 st | | e |

e Export o Spreadsheet
@ womm [T SOOI,
@ ArtceRight.aspx] appicaton. ‘
O dad@andmastef Alert Me ‘
= [

@ BladSingleLevel items change. w

image16.png
[SharePoint Solution Generator 2008

i SharePoint Solution Generator 2008

=loix|

= .

Sie Definion JL Dericon}

=

Cancel

image17.png
[SharePoint Solution Generator 2008 =10ix]

Generate List Definition

Choase aWeb ste Speciythe Web st that contains the SherePoint Listto use as the source forthe

ot Sheun Ll L Defrton
Ceeshasn O Croose a e

i Home (htip://vm-spdev-7952]
Engize 8 HR Paral (1t /v spcey-7352m)

Speciy save localion

@ Specily a site w
[Po:7vm-spdev 79521111

Back = Cancel

image18.png
[SharePoint Solution Generator 2008

Generate List Definition

Choase a\Web ste

Chosse the Lis(s) o includs in the generated soltor

=10ix]

Pick s ShatePoit List O Comtee e
O Dscumess
Soeci save ocaton
0 Images

Finslze

Offces
O Workflow Tasks

Back

=

Cancel

image19.png
Mame
D offices

Sproperes
ot Ls:peiwion cor

image20.png
(5] Solation Webpart2 (1 projec)
& 3 webpartz
4 Propertes
=3 References
1tin
L cby
o &

Alltems. aspx

DispForm.aspx

EditFormaspx

ListDefinition sl

NewForm.aspx

Officelistings.aspx
ma sl

image21.png
WorleyParsons - Microsoft Visual Studi

Edt View Project Buld Team Desbug Data Tools Test Apalyze Window Help
CEH@ | %R -F-B| b o - any CPU
0P8 83859

|xoci00 L ¢ | 420y s2aizs

Siteprovisioning.cs5 | manest o | Souce Control xplorer | tatPoge |

BEE ey Py T=

- x

[WorleyPaons Stcbeimion serovmionns T[St eaerecaeropetiospeperies

|

¢

if (conType.Group
¢
pubeh. PagesList . ContentTypes. hdd (conType) ;

)
pubeb. Update () ;

g
* Default gite Icon
.y

web.Sitelogolrl = "/SiteCollectionnages/Vor leyParsanslogo. gif";

b, Update () 5

"WorleyParsons Content Types” ¢ publieh.PagesList.ContentTypes.Bestlt

=l

6] Urinstall WorleyParsons Features.wep. bat
G5] Urinstall WorleyParsons. SteDefinton.wap bt
‘5751 Uparade WorleyParsons Sobtions.bat:
B WorlyParsons.Features v
6] WoleyParsans Features wsp.bat
B WorkyParsons.SteDefiion wep
GF] WorleyParsans,SteDefntion wsp. bat

& Worleyparsans.Adspters
5158 WorleyParsons Features
Propeties

2 References
B & bin
- [Debug

1 soluton
3 setup.bat

) WorleyPersons Features.dl
7 WorleyPersons Features.pdb
3 WorleyPersons Features.wsp

/% set
//THIS
/% set
//THIS

ta
15
o
15

inherit the Lvailable Page Layouts +/
BY DEFAULT
inherit the Availsble Site Templates ¥/
BY DEFAULT

b

Pk

(3 Templates

WorleyParsons Images

[worleyParsons ListTemplates
WiarleyParsans MasterPages
WorleyParsons PageLayouts
WarleyParsans SteColumns
‘WorleyParsans Styles

WarleyParsans ViebCantertTypefindng
orleyParsans WebParts

) WorleyParsons Features.csprojvpscc
- @F WorleyParsons. SiteDefinition

utput

MURRCEAE 3]

Show output from: Buld

Properties
2 References
[pkg

Operacion compleved successfully.
Betivating featurs UorleyParsons SiteColumns
Operation completed successfully.
Activating festurs WorleyParsons WebParts
Operation completed successfully.
Betivating featurs UorleyParsons LiscTemplaces
Operation completed successfully.
Activating festurs WorleyParsons Inages
Operation completed successfully.
Betivating featurs UorleyParsons UebContentTypeBinding
Operation completed successfully.
Recyeling applicacion pool, ITS://Localhost/u3sve/apppools/PortalippPool
Operation completed successfully.

Build: 2 succesded or up-to-date, 0 failed, 0 skipped
Deploy: 1 succesded, 0 failed, 0 skipped

T}

Site Defintian
N Hand)

WP View | cJoluton Explorer 7 Team Explorer
)

[Gloss view

&
B

- x

Custom Tocl
Custom Taol Namespace.
B pisc

File Name

Full Path

| [isc

23 Eror st = Output [Pending Changes [€5 Hstory

Ready

image1.jpeg
=1 Office

